ANDREW R. MCCLUSKEY ^[a,b], JAMES GRANT ^[a], STEPHEN C. PARKER ^[a] & KAREN J. EDLER ^[a]

a. Department of Chemistry, University of Bath, Bath b. Diamond Light Source, Rutherford Appleton Laboratory, Harwell-Oxford

SURFACTANTS AND MOLECULAR DYNAMICS

ANDREW R. MCCLUSKEY ^[a,b], JAMES GRANT ^[a], STEPHEN C. PARKER ^[a] & KAREN J. EDLER ^[a]

a. Department of Chemistry, University of Bath, Bathb. Diamond Light Source, Rutherford Appleton Laboratory, Harwell-Oxford

SURFACTANTS BUT NOT MOLECULAR DYNAMICS

HOW SOFT MATTER PEOPLE USE SASSIE

MICELLES ARE TOUGH TO SIMULATE

EDUCATE STARTING STRUCTURE WITH EXPERIMENT

FIT00G 1.0

Fitoog 1.0 was based on reverse Monte-Carlo

FIT00G 1.0

TOO SLOW

- Written in python with no parallelisation
- Single structure
- The parameter space in a micellisation has hundreds of dimensions
 - Even with the Metropolis condition it is easy to be stuck in local minima

FITOOG 2.0

Fitoog 2.0 uses a hybrid particle swarm-genetic algorithm

PARTICLE SWARM ALGORITHM

- Each particle has knowledge of its personal best position and the global best ever position in parameter space
- Parameters are changed based on a velocity that is determined as follows

$$v_i \leftarrow v_i + U(0, \phi_1) \times (p_i - x_i) + U(0, \phi_2) \times (p_g - x_i)$$
$$x_i \leftarrow x_i + v_i$$

PARTICLE SWARM ALGORITHM

Can get stuck in local minima

INITIAL POPULATION

PARENTS

PARENTS

PARENTS

Can struggle to find the bottom of a minimum

BEST OF BOTH WORLDS?

FIT00G 2.0

► C++

- Parallelised with MPI
 - Over scattering calculation for each population member
- Population of structures
- Centre-of-mass and orientation are parameters that are optimised
- Relatively straightforward to try different algorithms
- Really not ready for people to use but if you know what you are doing feel free
 - Open-source on Github

ACKNOWLEDGEMENTS

- Karen Edler (Bath)
- Steve Parker (Bath)
- James Grant (Bath)
- Andy Smith (DLS)
- Jonathan Rawle (DLS)
- Bath/DLS Funding

Sadie